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Abstract

This paper evaluated multidimensional linking procedures with which

multidimensional test data from two separate calibrations were put

on a common scale. Data were simulated with known ability

distributions varying two factors which made linking necessary:.

mean vector differences and variance-covariance (v-c) matrix

differences. After the calibrations of multidimensional item

parameters, blocks of means from item parameter estimates were used

to equate two groups. The linking was effective for mean vector

differences. The linking for v-c matrix differences was less

effective, but encouraging. Suggestions for future research are

provided.
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Evaluation of Procedures for Linking

Multidimensional Item Calibrations

Unidimensional item response models have long been considered

as somewhat unrealistic. Very few combinations of test items and

examinee populations can be reasonably argued to produce truly

unidimensional item response data. Fortunately, such arguments

have become less important, as fast, convenient and inexpensive

multidimensional item calibration computer programs have become

more available (Fraser, 1987; Muthen, 1988; Wilson, Wood & Gibbons,

1991). That -these programs have not been more widely used is

perhaps due to a shortage of well established applications to

practical testing problems. This is in contrast to the

unidimensionat case, for which reliable and intensely researched

applications to test equating, test construction, item banking, and

detection of differential item

(Lord, 1980).

A basic requirement of many

functioning have been developed

practical applications is a way of

linking items calibrated on different samples of examinees onto a

common ability metric. While a variety of procedures have been

proposed for the unidimensional case, extensions to the

multidimensional case have not been carefully investigated. Davey

and Kashima (Davey, 1991) have proposed a general framework for

linking multidimensional calibrations. The purpose of this paper

is to assess the performance of the linking procedures under this

framework.
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Linking multidimensional item calibrationS

The compensatory (or linear) multidimensional item response

model (McKinley & Reckase, 1983) expresses the probability of a

correct response to the item j by an examinee with the ability

vector asl:

Prob(uii = 1 = Pi( 13 J) = Ci + (1 c1)L[AT(11.1 - bi)]

where L() is either the logistic or normal distribution function,

the vectors 4i = and ki = characterize

item discrimination and difficulty with respect to the ) ability

dimensions, and ci gives the probability of an examinee with very

low ability answering correctly by chance.

Because item and ability parameters enter the logistic

function in the 2orm 41.(8 -b), the vectors of discrimination

parameters a can be linearly transformed (rotated) to 4 by

premultiplying them by a nonsingular matrix Fw, providing the

ability and difficulty vectors, 8 and k, are correspondingly

premultiplied by the inverse, F-1. Similarly, difficulty parameters

can be translated by adding a vector of constants, g, to each t,

provided these same constants are added to ability vectors as well.

Thus, a*=r18 + g and If = F-112 + g. Such transformations of the

ability scale produce no net effect on item response surfaces.

Indeterminacy in the latent trait model is usually resolved by

requiring obtained parameter estimates to satisfy some number of
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conditions or constraints. Imposing these constraints "identifies"

the model and allows unique estimation of the remaining parameters.

Unidimensional solutions are typically identified by setting the

mean and variance of either the examinee ability or the item

difficulty estimates to specified constants. For example, ability

estimates may be scaled so as to lave zero mean and unit variance.

Multidimensional models require not only that the location and

scale of each ability axis be fixed, but also that the orientation

of the axes be specified. The simplest way of specifying the

orientation of the ability axes is to set one or more item

discrimination parameters to zero on a given dimension. However,

more elaborate constraints are possible, and in fact desirable.

For example, the mean of sets of discrimination parameters can be

set to specified constants.

Estimating transformation parameters

The sum and substance of scale linking is finding rotation

matrices, F, and translation vectors, g, that take Parameter

estimates from separate calibrations to a common ability metric.

For this to be possible, the separate calibrations must be based on

common or randomly equivalent examinees, or include common items.

The latter case is the principal focus here. The particular

linking model considered regards one set of parameter estimates as

a base that defines the ability space, while the second set of

estimates is to be transformed to be consistent with that space.

Davey (1991) suggested estimating scaling parameters by
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simultaneously solving a set of scaling equations. Each scaling

equation sets some function of the common item parameter estimates

equal across calibrations by applying the proper choice of F and e

to one set

equation is

calibration

of estimates.

a function of

The left hand side of each scaling

the parameter estimates from the base

sample, while the right hand side is the same function

of the other set of parameter estimates (or, more precisely, the

transformed versions of these estimates). More formally, let 4,,

ti, and a, denote the parameter estimates for the common items form

the base calibration sample, while 4,, D2, and ft, represent

parameter estimates from the second calibration. The system of

scaling equations then takes the form:

ht(A1, Di, ao hi(Fra,, F- La,-Fe)

h2(ai,' ai) = h2 F-2a2-1-g)

= h,(FTa,, F-1b2+g, F-Ita,+g)

where q is the number of elements of F and g to be estimated. The

resulting, generally nonlinear, equations are solved simultaneously

for the unknown elements of the rotation matrix F and the

transformation vector g.

While any properly structured set of scaling functions can

serve to estimate scaling parameters2, it is believed that more

stable estimates will be obtained if the scaling equations

themselves are stable functions of the item parameter estimates.
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For example, equating the means of a large number of item parameter

estimates is preferable to equating single estimates.

Methods

Design

This study concentrated on linking items calibrated under a

two-dimensional model on samples from base and focal examinee

populations. Using a compensatory multidimensional two-parameter

logistic model, 40-item two-dimensional data sets were generated

for the base and focal groups. Two factors were considered in this

study to make scale linking necessary. The first factor, the

difference between the mean vectors for the two groups, had three

levels (no differences, small differences, and large differences).

The base group always had a mean vector of [0, 0]. On the other

hand, the focal group had three levels of the mean vector, (a) [0,

0], (b) [-.5, -.5], and (c) [ -1, -1].

The second factor, the difference between the variance-

covariance (v-c) matrix, also had three levels (no transformation,

an orthogonal transformation, and an oblique transformation). The

base group always had the v-c matrix of [1 .5, .5 1]. For the

focal group, the v-c matrix was either (a) [1 .5, .5 1] which

required no transformation, (b) [.8 .4, .4 .8) in which the

variance was smaller but the correlation was the same as compared

to the base group, requiring an orthogonal transformation, or (c)

[1 .7,.7 1] in which only correlation differed, thus requiring an

oblique transformation.

6
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The two factors were completely crossed (3 x 3). Table 1

summarizes the nine conditions (C1 - C9). In each condition,

examinees were drawn from either the base or the focal group, and

responses to a common set of items were generated. Item parameters

were then calibrated independently using NOHARM (Fraser, 1987) on

both samples. Finally, the focal ability metric was linked to that

of the base either by (a) a "poor" lining method or (b) a "good"

linking method. These linking methods are described in the next

section. In each condition, this process was repeated 20 times to

produce distribution of linking and item parameter estimates,

Consequently, 180 pairs (i.e., base and focal groups) of data sets

were analyzed.

Insert Table 1 about here.

Linking Methods

Using a two-dimensional model, F was a 2 x 2 matrix and e was

a two element vector. No restrictions was imposed on the structure

of F and g, so a total of six scaling parameters were to be

estimated, with six scaling equations required to do so. Two

different methods for obtaining scaling equations were used. The

first method, a "poor" linking method, equated only individual item

parameter estimates across calibrations, and expected to yield poor

estimates of the scaling parameters. More specifically, the six

scaling equations were set using only two items of the test. The



six equations are:

a 1b2 = a f2 *

a2b2 a2f2*
15.122 = 15lf2*
b2b2 = 152f2*

alb3 = alf3*
a2b3 = a2f3*

Linking
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where a, and a2 stand for the elements of the a vector and b, and b2

the elements of the b vector. The subscript 'b' or 'f' indicates

the base or focal group, respectively. The last subscript

indicates Item. Items 2 and 3 were used. The star * indicates

transformed values. The choice of two specific items was arbitrary

except avoiding Item 1 which always had a fixed a2 from the NOHARM

estimates.

The second method, a "good" linking method, equated the means

of the blocks of item parameter estimates. In this study, all the

items were used for the six scaling equations. The six equations

are:

10
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20 20

Ealai = E alfi*
i=i i=1
40 40

a lbi :--. E alfi*
i -21 i'21

20 20

E a2bi = E a2f.1*
1=1 1.'
40 40-
vir

a2bi =
.,2fL a .*

i =21 1=21
40 40

Eb,b, = E b,,,*
i =1i. 1=1
90 40

E b2bi = E b2fi*
i=i i=i

Again, the choice of the above six equations was arbitrary. The

simultaneous equations for both linking methods were solved by

using SAS/ETS in which the Newton m)thod was used to solve

equations.

Data Generation

Item parameters from a real test was used. The parameters are

shown in Table 2. These parameters are estimates from a 1992 form

of the ACT Assessment Mathematics test. Ability parameters (81 and

82) were simulated from a random normal distribution. The mean

vector varied from condition to condition as described earlier.

The variance was also varied for some conditions. The appropriate

correlated Es, and 82 for each condition were simulated by first

generating two independent normally distributed pseudorandom

variables z1 and 22 and then transforming them to 81 and 82 by

weighted linear transformations. The weights were the elements of

Tv, a matrix which satisfies R = VT, where R is the target

11
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correlation matrix. The sample size of each group was 1000.

Insert Table 2 about here.

Analysis

The linking procedures were compared at two levels. First, the

mean linking parameter estimates from 20 replications were compared

to true linking parameters. These true values were known since the

population ability distributions were specified. Second,

transformed item parameter estimates from the focal group were

compared with true item parameters using root mean square error

(RMSE). In addition, RMSE between the focal group item parameter

estimates before transformation and true item parameters was

obtained to establish the "no linking" baseline condition.

Results

Table 3 shows the comparison of true and estimated linking

parameters. The elements of the matrix F are expressed as fl, f2,

f3, and f4, and those of the vector g as el and e2. Clearly, the

"poor" linking methods produced linking parameter estimates which

are drastically different from true parameters. The estimates

varied from replication to replication as indicated by rather large

standard deviations. On the other hand, estimates from the "good"

linking method are more consistent with true parameters. In

addition, the smaller standard deviations over the replications

suggest that the method produces fairly stable estimates.

12
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Insert Table 3 about here.

The effects of the mean vector difference and the v-c matrix

difference can be observed by comparing results from Cl through C9

for the "good" linking method. The mean vector difference are

reflected in el and e2. The mean vector difference also affected

the estimates of F. As the mean vector difference became large,

estimates of F deviated from true parameters more (see Cl, C4, and

C7). As expected, the v-c matrix affected the estimates of F,

However, the estimates are not quite consistent with true

parameters for both orthogonal and oblique transformations.

Table 4 summarizes RMSEs between true and estimated item

parameters after transformation. Reported are the mean and

standard deviation of RMSE over the 20 replications. Again, it is

obvious that the "poor" linking method produced item parameters

which were very different from the true parameters. The mean RMSEs

are large and the standard deviations are also large. Furthermore,

the "poor" linking method was worse than no linking at all. The

"good" linking method, on the other hand, appears to be an

improvement over no linking except the orthogonal condition. The

improvement was most obvious when there was a mean vector

difference. Without linking, the deviation of d estimates can be

serious. Throughout the conditions, the means and standard

deviations of RMSE are fairly similar for the "good" linking method
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suggesting the effect of different mean vectors and v-c matrices

are controlled somewhat via transformation.

Insert Table 4 about here..

Also noted in Tables 3 and 4 are the convergence problems.

There were three cases (out of 360 cases) of convergence problems

in the calibration process using NOHARM, and one case of

convergence problems (out of 720 cases) in the linking process.

The first occurred when examinee abilities were low (C8-C9),

because one of the items (Item 39) was very difficult (d = -3.77)

resulting in the p-value of zero. The second occurred for no

obvious reasons. The simultaneous equations produced no solution

for the particular case.

Discussion

The results of this study indicate that the degree to which

item parameters from multiple calibrations of multidimensional test

data are put on a common scale depended on how the scaling

equations are selected to calculate the linking parameter

estimates. When the equations are set as such that only a small

portion of the test is used, the estimates for the linking

parameters can be seriously distorted. In fact, in our example of

the "poor" linking method where only two items were used for

linking, the use of linking had more harm than merit. This

phenomenon is understandable, because .a small portion of items is

14
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hardly a representative of the entire test, and linking estimates

from any deviant items within the small portion can distort the

remaining item parameter estimates via an undesirable

transformation.

The more important question is how to choose the scaling

equations using the entire test. In this study, all the items were

used and means of blocks were utilized for the iolution to the

scaling equations for the "good" linking method. However, there

are many ways to choose the equations. Instead of using means for

all the six equations, for example, standard deviations of item

parameters can be used in some of the equations. There is a need

for further studies in which various combinations of equations are

compared to produce an optimal linking parameter estimates. In our

results, the benefit of linking (i.e., the "good" linking method)

was most obvious when there was a mean vector difference. When

there was a v-c matrix difference, the results were not as

straightforward as those from a mean vector difference. An oblique

transformation seemed to produce item parameter estimates closer to

true item parameters than an orthogonal transformation. In either

case, however, the use of linking had no serious negative effect.

This study involved two stages of estimation. First, item

parameters were estimated using NOHARM. Second, these item

parameter estimates were used to estimate linking parameters.

Therefore, any deviations of linking parameter estimates or item

parameter estimates after transformation from true parameter values
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can be attributed to either the recovery ability of NOHARM or the

estimation ability of the linking method, as well as the sampling

errors. It appeared in our data using NOHARM that estimation was

difficult in some correlated Gs resulting some extreme item

parameter estimates. These extreme estimates in turn affected the

estimation of linking parameters.

The generalizability of the results is limited to the

conditions examined in this study. Only one kind of

multidimensional structure was used. Future studies need to focus

on different multidimensional structures as well as different

selections of scaling equations. In addition, there is a need for

investigating the behavior of NOHARM in a comprehensive study.

16
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Notes

LBecause the individual elements of b cannot be uniquely

determined, the function argument is usually written as aTOFd,

where d is the product arb. However, the full parameterization is

more convenient for purposes of scale linking. The transformation

from reduced to full parameterization is arbitrary, in the sense

that there are an infinite number of possible transformations. An

especially intuitive transformation is the following, which

distributes an item's difficulty across ability dimensions in

proportion to the item's discrimination with respect to those

dimensions:

-d
i

2The equations need only be independent and include as

unknowns each of the scaling parameters.

'If, for example, F were required to be orthogonal, only

three of its elements need be estimated, the fourth being

determined. Other constraints on F and g can be considered.
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Table 1. Distributions of the Focal Group

Mean Mean Vari- Covari-
Condition 8

1
ance ance

Cl 0.0 0.0 1.0 0.5
C2 0.0 0.0 0.8 0.4
C3 0.0 0.0 1.0 0.7

C4 -0.5 -0.5 1.0 0.5
C5 -0.5 -0.5 0.8 0.4
C6 -0.5 -0.5 1.0 0.7

C7 -1.0 -1.0 1.0 0.5
C8 -1.0 -1.0 0.8 0.4
C9 -1.0 -1.0 1.0 0.7

Note: For the reference group, [Mean 81, Mean 82] = [0.0, 0.0]
and [Variance, Covariance] = [1.0, 0.5] throughout
the conditions (C1 - C9).



Table 2. True Item Parameters

Item a, a2

1 2.3670 0.0000 2.4910
2 0.5770 0.3810 0.9950
3 0.6320 0.2650 0.6550
4 0.9900 0.4710 0.7640
5 0.5970 0.1830 0.2850
6 0.7700 0.6430 -0.0060
7 0.7530 0.4090 0.5680
8 1.6420 0.1470 1.2440
9 1.0400 0.5160 0.6090
10 1.2560 0.5140 0.2330
11 1.1710 0.1980 1.1100
12 1.2560 0.3880 0.9190
13 1.7110 0.4770 0.2370
14 0.6920 0.9140 -0.6760
15 0.5710 0.7210 -0.436C
16 0.3310 0.4270 -0.2750
17 2.0970 0.6940 0.5910
18 1.1900 1.1550 -0.9910
19 0.6320 0.3980 -0.2070
20 1.1120 1.3050 -0.6880
21 1.0200 1.1760 -0.0370
22 0.9560 1.2600 -0.4850
23 0.5970 0.8740 -0.5960
24 1.0100 0.4690 -0.1460
25 0.8330 0.7910 -1.4690
26 0.8140 0.7740 -1.0770
27 0.8690 0.8860 -0.9680
28 1.7110 1.7590 -0.0650
29 1.1170 1.1620 -0.8410
30 0.9280 1.3770 -1.1980
31 0.7940 1.3570 -0.9010
32 1.8670 1.5230 -1.3480
33 0.6020 0.4770 -0.6140
34 0.4420 0.4050 -0.9600
35 1.1520 2.1460 -1.8900
36 0.6250 0.7790 -0.8730
37 0.5260 0.9660 -1.3120
38 0.3060 0.9880 -1.5290
39 0.5710 2.2700 -3.7730
40 0.5640 0.4580 -0.8230

Mean 0.9672 0.8026 -0.3371
SD 0.4774 0.5265 1.0741

20
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Table 3. Comparison of True and Estimated Linking Parameters (20
Replications in Each Condition)

(a) C1 -C3

Estimated

F
Condition E True Poor Good

M SD M SD

Cl fl 1.00 -.05 ( 3.48) 1.02 (.14)
f2 0.00 -.48 ( 4.75) -.02 (.10)
f3 0.00 2.38 ( 8.45) -.05 (.22)
f4 1.00 1.80 ( 9.88) .96 (.20)

el 0.00 1.97 (12.84) -.00 (.05),

e2 0.00 -7.05 (43.36) -.03 (.07)

C2 fl 0.89 .35 ( 1.67) 1.09 (.12)
f2 0.00 .05 ( 1.44) -.07 (.13)
f3 0.00 1.57 ( 3.81) .14 (.20)
f4 0.89 .89 ( 3.12) 1.24 (.19)

el 0.00 -.47 (17.12) -.01 (.05)
e2 0.00 11.90 (48.03) -.03 (.06)

C3* fl 1.00 .92 ( 1.58) 1.03 (.15)
f2 0.00 .26 ( .80) .07 (.24)
f3 0.29 .12 ( 4.36) -.24 (.24)
f4 0.82 .20 ( 2.20) .84 (.19)

el 0.00 -.46 ( 1.34) .02 (.06)
e2 0.00 1.38 ( 4.22) -.04 (.06)

* C3 for the "good" linking method is based on 19 replications
due to a convergence problem in one of the 20 replications in
calculating linking parameters.
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(b) C4 -C6

Estimated

F
Condition E True Poor Good

M SD. M SD

C4 fl 1.00 1.23 ( 1.66) 1.04 (.12)
f2 0.00 -.09 ( 1.61) -.00 (.10)
f3 0.00 -.61 ( 4.38) -.10 (.22)
F4 1.00 1.33 ( 4.66) .95 (.14)

el -0.50 -.62 ( .46) -.50 (.11)
e2 -0.50 -.38 ( 1.07) -.46 (.19)

C5 fl 0.89 1.23 ( 1.44) 1.13 (.15)
f2 0.00 .50 ( 1.87) -.10 (.12)
f3 0.00 -.16 ( 5.34) .07 (.30)
f4 0.89 -.42 ( 5.01) 1.36 (.24)

el -0.50 -.75 ( .63) -.58 (.12)
e2 -0.50 -.14 ( 1.30) -.24 (.20)

C6 fl 1.00 3.76 (17.24) 1.06 (.14)
f2 0.00 .88 ( 4.38) .00 (.08)
f3 0.29 -8.61 (51.15) -.29 (.27)
f4 0.82 -1.77 (12.72) .88 (.20)

el -0.50 -.87 ( .55) -.49 (.12)
e2 -0.50 .25 ( 1.43) -.60 (.31)
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(c) C7 -C9

Estimated

F
Condition E True Poor Good

SD M SD

C7 fl 1.00 .34 ( 3.83) .91 (.14)
f2 0.00 .67 ( 3.43) -.17 (.14)
f3 0.00 3.33 ( 9.48) .21 (.33)
f4 1.00 -.74 ( 9.73) 1.31 (.29)

el -1.00 -.86 ( 1.41) -1.28 (.17)
e2 -1.00 -1.45 ( 3.95) -.35 (.40)

C8* fl 0.89 -1.22 ( 8.70) 1.05 (.17)
f2 0.00 -2.74 (13.80) -.11 (.17)
f3 0.00 8.15 (32.42) .29 (.35)
f4 0.89 11.96 (51.34) 1.56 (.29)

el -1.00 -1.20 ( .24) -1.23 (.21)

e2 -1.00 -.50 ( .31) -.20 (.39)

C9* fl 1.00 .81 ( .68) .99 (.15)

f2 0.00 .50 ( .81) -.08 (.14)

f3 0.29 .39 ( 1.76) -.15 (.33)

f4 0.82 -.29 ( 2.08) 1.09 (.25)

el -1.00 -1.34 ( .63) -1.11 (.23)

e2 -1.00 -.09 ( 1.64) -.75 (.50)

* C8 and C9 are based on 18 and 19 replications, respectively,
due to a convergence problem in estimating item parameters using

NOHARM.

23
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Table 4. Root Mean Square Error Between True and Estimated Item
Parameters after Linking (20 :-'eplications in Each Condition)

Poor Good No Linking

a1 a, d a1 a
2 a1 a

2

Cl M 4.04 3.32 5.41 .56 .41 .29 .59 .43 .'30

SD 7.07 6.31 10.27 .10 .13 .09 .16 .14 .10

C2 M 1.77 1.16 1.82 .55 .37 .24 .33 .27 .23
SD 2.04 1.53 2.60 .13 .11 .08 .10 .10 .10

C3* M 3.83 1.28 2.89 .61 .47 .39 .88 .57 .40
SD 2.61 1.26 3.23 .12 .14 .14 .24 .20 .15

C4 M 2.21 1.88 2.11 .59 .47 .31 .65 .52. 1.45
SD 2.79 3.91 2.60 .13 .13 .10 .21 .18 .23.

C5 M 2.06 2.08 2.78 .54 .45 .27 .35 .32 1.22
SD 3.23 2.57 4.25 .12 .07 .06 .08 .06 .09

C6 M 10.65 3.12 6.90 .66 .53 .40 .95 .68 1.67
SD 32.94 4.98 15.57 .13 .12 .12 .30 .24 .33

C7 M 3.67 2.96 4.49 .58 .47 .30 .48 .40 2.37
SD 6.18 6.86 8.32 .12 .09 .05 .15 .07 .21

C8* M 5.78 8.51 8.78 .58 .49 .30 .31 .36 2.19
SD 21.16 32.83 34.28 .13 .08 .03 .09 .07 .14

C9* M 1.45 1.22 1.39 .64 .49 .36 .83 .51 2.75
SD .87 1.12 1.36 .12 .13 .09 .23 .18 .36

* C3 and C9 are based on 19 replications. C8 is based on 18
replications. See Table 2 for explanations.


